top of page
  • Black Facebook Icon
  • Black Twitter Icon
  • Black Instagram Icon

Example 1a. Regular Two-Sided CI with No Test

Traditional (balanced, two-sided) 95% confidence interval, [LCL(0.025), UCL(0.025)]. No null hypothesis testing (no p-value).

Serious statistical thinking is grounded in the research questions, and considers the study design, the nature of the variables, and how the results will be reported and used. Whether a WMW analysis is frequentist (the common kind) or Bayesian, it will require estimating the "true"(population) value of WMWprob. An appropriate confidence interval (CI, frequentist) or probability interval (PI, Bayesian, also called "credible" interval) summarizes that estimate's stochastic uncertainty.

Connor04.png

However, the vast majority of research questions are not hypotheses, and thus do not call for statistical inference (p-values). Researchers who still think otherwise might be provided with Jason Connor's (2004) exhortation, "The Value of a p-Valueless Paper," which stresses that confidence intervals provide more information than p-values and are not as confusing.

Thus, for this example, why not just compute the estimate and 95% confidence interval?

    Ex1a <- WMW(Y=Rating, Group=TrueDiseaseStatus,

                GroupLevels=c("Abnormal", "Normal"),

                Alpha=c(0.025, 0.025))

The printed results begin by tabling the counts, proportions, and cumulative counts for the "abnormal" and "normal" images, separately. For example, note that 65% of the "abnormal" images were rated 5 versus 3% for the "normal" images. The cumulative proportions show that only 14% of "abnormal" images rated 3 or below versus 78% for the "normal" Images.

  *************************************************************
             WMW: Wilcoxon-Mann-Whitney Analysis
    Comparing Two Groups with Respect to an Ordinal Outcome

                    Outcome variable: Rating
               Group variable: TrueDiseaseStatus
           Comparison: (Y1) Abnormal vs. (Y2) Normal
  *************************************************************

Counts
******
            1    2    3    4    5    Total
Abnormal    3    2    2   11   33       51
Normal     33    6    6   11    2       58


Proportions
***********
               1       2       3       4       5    Total
Abnormal   0.059   0.039   0.039   0.216   0.647    1.000
Normal     0.569   0.103   0.103   0.190   0.034    1.000


Cumulative Proportions
**********************
               1       2       3       4       5
Abnormal   0.059   0.098   0.137   0.353   1.000
Normal     0.569   0.672   0.776   0.966   1.000

The WMW() output contains the sample sizes and how WMWprob was polarized and estimated for this particular problem. The chief results are the estimate, AUC = WMWprob = 0.893, and the 95% CI, [0.818, 0.940].

WMW Parameters
**********************************************************************
 WMWprob = Pr[Rating{Abnormal} > Rating{Normal}] +
              Pr[Rating{Abnormal} = Rating{Normal}]/2

 WMWodds = WMWprob/(1 - WMWprob)
**********************************************************************


Sample Sizes
***********************
  Abnormal       51
   Normal        58
***********************


**********************************************************
  Stochastic Superiority       # of Pairs     Probability
  ......................       ..........     ...........
  {Abnormal} > {Normal}              2487           0.841
  {Abnormal} = {Normal}               310           0.105
  {Abnormal} < {Normal}               161           0.054
                   Total:            2958           1.000

      WMWprob = (2487 + 310/2)/2958 = 0.893
      WMWodds = 0.893/(1 - 0.893) = 8.361
**********************************************************



*************************************
Parameter  Estimate      0.95 CI*      
*************************************

 WMWprob     0.893    [0.818, 0.940]   
 WMWodds     8.361    [4.493, 15.559]  
*************************************
*CI error rates (alphaL, alphaU): (0.025, 0.025)
 CI Method: coupling Sen (1967) & Mee (1990)

bottom of page